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Abstract  G protein-coupled receptors (GPCRs) are the largest and a diverse family 
of proteins involved in signal transduction across biological membranes. GPCRs 
mediate a wide range of physiological processes and have emerged as major targets 
for the development of novel drug candidates in all clinical areas. Since GPCRs are 
integral membrane proteins, regulation of their organization, dynamics, and func-
tion by membrane lipids, in particular membrane cholesterol, has emerged as an 
exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct 
interaction of cholesterol with the receptor (specific effect). Alternately, GPCR 
function could be influenced by the effect of cholesterol on membrane physical 
properties (general effect). In this review, we critically analyze the specific and gen-
eral mechanisms of the modulation of GPCR function by membrane cholesterol, 
taking examples from representative GPCRs. While evidence for both the proposed 
mechanisms exists, there appears to be no clear-cut distinction between these two 
mechanisms, and a combination of these mechanisms cannot be ruled out in many 
cases. We conclude that classifying the mechanism underlying cholesterol sensitiv-
ity of GPCR function merely into these two mutually exclusive classes could be 
somewhat arbitrary. A more holistic approach could be suitable for analyzing 
GPCR–cholesterol interaction.
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Abbreviations

7-DHC	 7-Dehydrocholesterol
7-DHCR	 3β-Hydroxy-steroid-Δ7-reductase
24-DHCR	 3β-Hydroxy-steroid-Δ24-reductase
AY 9944	 t ra n s - 1 , 4 - b i s ( 2 - c h l o r o b e n z y l a m i n o e t h y l ) cy c l o h ex a n e 

dihydrochloride
CB	 Cannabinoid receptor
CCK	 Cholecystokinin receptor
CCM	 Cholesterol consensus motif
CCR5	 CC chemokine receptor 5
CRAC	 Cholesterol recognition/interaction amino acid consensus
CXCR4	 CXC chemokine receptor 4
GalR2	 Galanin receptor 2
GPCR	 G protein-coupled receptor
MβCD	 Methyl-β-cyclodextrin
MI	 Metarhodopsin I
MII	 Metarhodopsin II
mGluR	 Metabotropic glutamate receptor
SLOS	 Smith–Lemli–Opitz syndrome
Smo	 Smoothened
T2R4	 Bitter taste receptor 4

1  �G Protein-Coupled Receptors as Signaling Hubs and Drug 
Targets

The G protein-coupled receptor (GPCR) superfamily is the largest and an extremely 
diverse family of proteins implicated in information transfer across biological 
membranes [1–3]. They are characterized by seven transmembrane domain topol-
ogy and include >800 members which are encoded by ∼5% of genes in humans 
[4]. Signaling by GPCRs involves their activation by a wide variety of extracellular 
ligands that trigger the transduction of signals into the cellular interior through 
concerted structural rearrangements in their transmembrane and extramembranous 
domains [5, 6].

GPCRs are involved in the modulation of cellular responses to stimuli that 
encompass a variety of endogenous and exogenous ligands which even include pho-
tons. As a result, GPCRs mediate several essential physiological processes such as 
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neurotransmission, cellular metabolism, secretion, cellular differentiation, growth, 
and inflammatory/immune responses. GPCRs have therefore emerged as popular 
targets for the development of novel drug candidates in all clinical areas ranging 
from disorders of the central nervous system to cancer [7–11]. Importantly, ~50% 
of clinically prescribed drugs and 25 of the 100 top selling drugs target GPCRs 
[12–14]. However, only a small number of GPCRs are currently targeted by drugs 
[15, 16]. This presents the exciting possibility that the receptors which are not iden-
tified yet could be potential drug targets for diseases that pose a challenge to the 
available repertoire of drugs.

The role of membrane lipids in GPCR organization, dynamics, structure, and 
function has emerged as an exciting area in GPCR biology. GPCRs are integral 
membrane proteins with their transmembrane helices traversing the membrane 
seven times and as a consequence a major part of these receptors is surrounded by 
membrane lipids. For example, in case of rhodopsin, molecular dynamics simula-
tions show that the lipid–protein interface corresponds to ~38% of the total surface 
area of the receptor [17]. In such a scenario, it is only realistic that the membrane 
lipid environment would modulate GPCR structure and function. Cellular mem-
branes comprise of a wide variety of lipids, each of which uniquely modulates the 
physicochemical properties of the bilayer [18, 19]. Phospholipids, sphingolipids, 
and cholesterol constitute major lipid components of cell membranes, among which 
cholesterol has been extensively studied in the context of the organization, dynam-
ics, structure, and function of GPCRs.

2  �Membrane Cholesterol in GPCR Function

Cholesterol is a crucial and representative lipid in higher eukaryotic cell membranes 
and plays a key role in membrane organization, dynamics, function, and sorting. 
The unique molecular structure of cholesterol has been intricately fine-tuned over a 
very long timescale of natural evolution [20, 21]. The chemical structure of choles-
terol comprises of the 3β-hydroxyl group, the rigid tetracyclic fused ring, and the 
flexible isooctyl side chain (Fig.  1a). The 3β-hydroxyl group (sole polar group) 
helps cholesterol anchor at the membrane interface and is believed to form hydro-
gen bonds with polar residues of membrane proteins. The tetracyclic fused ring and 
the isooctyl side chain constitute the apolar component of cholesterol. An inherent 
asymmetry about the plane of the sterol ring is generated by methyl substitutions on 
one of its faces (Fig. 1b). The protruding methyl groups (constituting the rough β 
face) are believed to participate in van der Waals interactions with the side chains of 
branched amino acids such as valine, leucine, and isoleucine. The other side of the 
sterol ring (constituting the smooth α face) exhibits favorable van der Waals interac-
tion with the saturated fatty acyl chains of phospholipids (Fig.  1c; [22–24]). 
Cholesterol is nonrandomly distributed in specific domains (or pools) in biological 
and model membranes [22, 25–28]. Membrane cholesterol is essential for a range 
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Fig. 1  Structural features of cholesterol and its orientation with respect to membrane components: 
(a) Chemical structure of cholesterol with its three structurally distinct regions (shown as shaded 
boxes): the 3β-hydroxyl group, the rigid tetracyclic fused ring, and the flexible isooctyl side chain. 
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of cellular processes such as membrane sorting and trafficking [29], signal transduc-
tion [30], and the entry of pathogens [31–35].

Membrane cholesterol has been shown to modulate the organization, dynamics, 
and function of several GPCRs (reviewed in [3, 36–42]). Understanding such 
dependence of the function of GPCRs on membrane cholesterol assumes signifi-
cance since the function of GPCRs has been found to be compromised in patho-
logical conditions with misregulated cholesterol metabolism [43]. In addition, 
cholesterol exhibits an inherent diversity in terms of its distribution across cell, 
tissue, and organ types. For example, although the central nervous system consti-
tutes ~2% of the body mass, it accounts for ~25% of the cholesterol content in the 
body [44, 45]. Moreover, cellular cholesterol content is age-dependent [46] and 
developmentally regulated [47].

In spite of several studies showing the importance of cholesterol in GPCR func-
tion, the exact molecular mechanism underlying this remains elusive [48, 49]. The 
cholesterol dependence of the function of GPCRs could be attributed to either spe-
cific (direct) interaction or general (indirect) effect of membrane cholesterol on 
physical properties of the membrane in which the receptor is embedded. A combi-
nation of specific and general effects is yet another possibility. In this review, we 
discuss the cholesterol sensitivity of GPCRs with examples highlighting specific 
and general effects of membrane cholesterol on GPCR function, along with experi-
mental strategies to explore such interactions.

3  �Strategies to Explore Cholesterol Sensitivity of GPCRs

The mechanism of action of cholesterol on GPCRs has been explored using a battery 
of experimental strategies, each of which provides a unique perspective to address 
the molecular basis of these interactions. The strategies commonly used to study 
such interactions rely on the modulation of cholesterol content or its availability in 
membranes in order to probe its role in supporting the function and organization of 
GPCRs. These techniques, when used judiciously, could be helpful in delineating 
the specific and general effects of cholesterol on GPCR function. We discuss below 
a few important strategies that are used to explore the nature of the interaction of 
membrane cholesterol with GPCRs.

Fig. 1  (continued) (b) Two faces of cholesterol: asymmetry is due to the methyl groups on one 
plane of the sterol ring of cholesterol resulting in a rough (β) face, leaving the other plane with 
axial hydrogen atoms (smooth (α) face). (c) A schematic showing the possible orientation of cho-
lesterol with respect to membrane components (phospholipid and transmembrane protein seg-
ment). The smooth α face of cholesterol contributes to favorable van der Waals interaction with the 
saturated fatty acyl chains of phospholipids and the rough β face interacts with uneven transmem-
brane domains of integral membrane proteins. Adapted and modified from [22]. See text for more 
details
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3.1  �Solubilization and Reconstitution

Solubilization is an important method used to understand the structural and func-
tional aspects of GPCRs. Solubilization involves the isolation of the receptor from 
its native membrane environment and dispersing it in a relatively purified state using 
suitable amphiphilic detergents. The process of solubilization leads to dissociation 
of proteins and lipids which are held together in the native membrane, ultimately 
resulting in the formation of small clusters of protein, lipid, and detergent in an 
aqueous solution [50–54]. Solubilization has been utilized as an effective strategy to 
study GPCR–lipid interactions and probe lipid specificity by reconstitution of the 
receptor with specific lipids [54, 55]. The process of reconstitution involves removal 
of detergent, followed by incorporation of the receptor into membrane-mimics such 
as micelles, bicelles, liposomes, nanodiscs, and planar lipid bilayers [55, 56]. This 
strategy has been earlier utilized to explore the role of cholesterol in the function of 
the serotonin1A receptor [54]. Using this strategy, we further explored the structural 
stringency of cholesterol in the function of the serotonin1A receptor by reconstitut-
ing the solubilized receptor with close structural analogs (biosynthetic precursors 
and stereoisomers) of cholesterol [57–60].

3.2  �Inhibition of Cholesterol Biosynthesis

Biosynthesis of cholesterol is carried out in a stringently regulated multi-step enzy-
matic pathway [61]. A physiologically relevant approach to study the role of choles-
terol in GPCR function is metabolic (chronic) depletion by inhibiting specific 
enzymes in its biosynthetic pathway. A common strategy that has been used to 
chronically deplete cellular cholesterol is the use of statins [62, 63]. Statins are 
competitive inhibitors of HMG-CoA reductase, the enzyme that catalyzes the rate-
limiting step in the cholesterol biosynthetic pathway (Fig. 2a; [64]). In addition, 
distal inhibitors such as AY 9944 (trans-1,4-bis(2-chlorobenzylaminoethyl)cyclo-
hexane dihydrochloride) that inhibits 3β-hydroxy-steroid-Δ7-reductase (7-DHCR), 
and triparanol which inhibits 3β-hydroxy-steroid-Δ24-reductase (24-DHCR) have 
been extensively utilized [65, 66]. Inhibition of 7-DHCR and 24-DHCR that cata-
lyze final steps in the Kandutsch-Russell pathway [67] and Bloch pathway [68] 
results in the accumulation of 7-dehydrocholesterol (7-DHC) and desmosterol, 
respectively (Fig. 2a). Importantly, malfunctioning of 7-DHCR and 24-DHCR has 
been identified as major factors for lethal neuropsychiatric disorders such as Smith–
Lemli–Opitz syndrome (SLOS) and desmosterolosis [69, 70]. Therefore, inhibitors 
of 7-DHCR and 24-DHCR have been successfully utilized to generate cellular and 
animal model systems to study these disease conditions [65, 66, 71, 72]. We previ-
ously utilized this strategy to generate a cellular model for SLOS using AY 9944, 
and explored the function of the serotonin1A receptor (an important neurotransmitter 
receptor) in this neuropsychiatric disease condition [43].
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3.3  �Specific Carriers

A commonly utilized strategy for acute and specific modulation of membrane 
cholesterol content is by using specific carriers. Methyl-β-cyclodextrin (MβCD), a 
member of the cyclodextrin family, is an oligomer of seven methylated-glucose 
residues that exhibits specificity for cholesterol over other membrane lipids 
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Fig. 2  Strategies to explore cholesterol-dependence of GPCR function. (a) A schematic represen-
tation of biosynthetic inhibitors of cholesterol. The role of cholesterol in GPCR function can be 
analyzed utilizing inhibitors of cholesterol biosynthesis that allow chronic depletion of cholesterol 
in a physiologically relevant manner. Statins inhibit the first rate-limiting step that involves the 
conversion of HMG-CoA to mevalonate at an early step in the cholesterol biosynthetic pathway. 
Inhibitors of the final steps in the Kandutsch-Russel and Bloch pathways of cholesterol biosynthe-
sis include AY 9944 and triparanol that inhibit the synthesis of cholesterol from their immediate 
precursors, 7-dehydrocholesterol and desmosterol, respectively. (b) The chemical structure of 
methyl-β-cyclodextrin (MβCD), a specific carrier of cholesterol that selectively depletes mem-
brane cholesterol. R denotes a methyl group. (c) Chemical structure of nystatin, a representative 
complexing agent
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(see Fig. 2b; [34, 73, 74]). MβCD has been utilized as the carrier of choice to study 
the effect of cholesterol on GPCR function, organization, and dynamics in a large 
number of studies [36, 37]. The relatively small size and polar nature of MβCD 
allows its close interaction with membranes, thereby enabling efficient and selective 
modulation of cholesterol content. This strategy has been utilized to explore the 
cholesterol-dependent function of several GPCRs such as rhodopsin [75], oxytocin 
[76], galanin [77], serotonin1A [78, 79], cannabinoid [80–82], and bitter taste T2R4 
receptors [83]. We have successfully utilized MβCD for controlled modulation of 
membrane cholesterol to study its role in the function of the serotonin1A receptor 
[78, 79, 84]. We further utilized MβCD to replace cholesterol with its various close 
structural analogs in order to explore the structural stringency of cholesterol for sup-
porting receptor function [54]. Interestingly, we have recently shown that although 
both inhibition of cholesterol biosynthesis and specific carriers modulate choles-
terol levels in cell membranes, the actual effect could differ a lot (even at same 
cholesterol concentrations), since the membrane dipolar environment in these cases 
turn out to be very different [85].

3.4  �Enzymatic Oxidation

Specific modulation of membrane cholesterol could also be achieved by its oxida-
tion using the enzyme cholesterol oxidase. Cholesterol oxidase catalyzes the oxida-
tion of cholesterol to 4-cholestenone at the membrane interface [86], thereby 
modifying the chemical nature of cholesterol without physical depletion from mem-
branes. Oxidation of cholesterol exhibits mild effect on global membrane properties 
relative to its physical depletion, and minimizes nonspecific effects of cholesterol 
modulation. This strategy has been earlier utilized to explore the structural speci-
ficity of cholesterol (the hydroxyl group in particular) in the function of several 
GPCRs such as the serotonin1A receptor [87, 88], oxytocin and cholecystokinin 
(CCK) receptors [76], galanin-GalR2 receptors [77], rhodopsin [89], and chemo-
kine receptors CXCR4 and CCR5 [90].

3.5  �Complexing Agents

Modulating availability of cholesterol in the membrane, rather than physical deple-
tion, is yet another method to explore the cholesterol sensitivity of GPCR function. 
Cholesterol-complexing agents such as digitonin, filipin, nystatin, amphotericin B, 
and perfringolysin O [91–95] at appropriate concentrations partition into mem-
branes and sequester cholesterol, thereby making it unavailable for interaction with 
GPCRs. These agents could be used to address the interaction of cholesterol with 
GPCRs by restricting cholesterol availability. Figure  2c shows the chemical 
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structure of nystatin, a representative complexing agent. This strategy has been 
earlier utilized to probe the requirement of membrane cholesterol for the function of 
the serotonin1A [96, 97], oxytocin [76], and galanin [77] receptors.

4  �Mechanisms of Cholesterol Sensitivity of GPCRs

Cholesterol sensitivity of GPCRs is well documented. However, the underlying 
molecular mechanism remains elusive. The ongoing efforts to understand the struc-
tural and functional correlates underlying cholesterol sensitivity of GPCR function 
have provided evidence in favor of both specific interaction and general (membrane) 
effects. We discuss below representative studies on cholesterol sensitivity of GPCRs.

4.1  �Specific Requirement of Membrane Cholesterol for GPCRs

4.1.1  �Serotonin1A Receptor

The serotonin1A receptor is a key neurotransmitter GPCR that is implicated in the 
generation and modulation of various cognitive, behavioral, and developmental func-
tions [98–102]. The serotonin1A receptor is the most well-studied GPCR in terms of 
specificity of cholesterol in the organization, dynamics, and function of the receptor. 
Earlier work from our laboratory has comprehensively demonstrated the specific 
requirement of membrane cholesterol for the function of the serotonin1A receptor uti-
lizing an array of experimental approaches. By modulating the availability of mem-
brane cholesterol by employing (1) MβCD [57, 78], (2) biosynthetic inhibitors such 
as statin [63] and AY 9944 [43], and (3) complexing agents such as nystatin [96] and 
digitonin [97], we have shown the requirement of cholesterol in receptor function. We 
generated a cellular model for SLOS (a fatal neuropsychiatric disorder) using AY 
9944 and showed that the function of the serotonin1A receptor is compromised under 
this disease-like condition [43]. We have recently generated a rat model of SLOS by 
oral feeding of AY 9944 to dams for brain metabolic NMR studies. Importantly, enzy-
matic oxidation of cholesterol [87, 88] led to a change in receptor function, without 
any appreciable effect on membrane order (as reported by fluorescence anisotropy 
measurements), thereby suggesting specific requirement of cholesterol for receptor 
function. We further demonstrated the structural stringency of cholesterol in support-
ing the function of the serotonin1A receptor by replacing cholesterol with its immedi-
ate biosynthetic precursors (7-DHC and desmosterol) [58, 59, 103] and stereoisomers 
of cholesterol ([60]; reviewed in [54]). In addition, we showed that the stability of the 
serotonin1A receptor is enhanced in the presence of cholesterol using biochemical 
approaches [104], molecular modeling [105], and all atom molecular dynamics simu-
lations [106]. Taken together, these studies bring out the cholesterol sensitivity of the 
serotonin1A receptor function, which in some cases (such as treatment with cholesterol 
oxidase) could have a specific mechanism.
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4.1.2  �Oxytocin Receptor

The oxytocin receptor plays an important role in several neuronal functions and in 
reproductive biology [107]. Cholesterol dependence of oxytocin receptor function 
was explored using multiple approaches [76, 108]. Modulation of membrane cho-
lesterol content using MβCD resulted in a change in the affinity state of the receptor 
for oxytocin, with the receptor in a high affinity state in the presence of cholesterol 
[108]. In addition, utilizing cholesterol-complexing agent filipin, mere complex-
ation of cholesterol was shown to be sufficient to modulate receptor function [76]. 
Importantly, treatment with cholesterol oxidase modulated the function of the 
receptor without a significant change in membrane order. The structural stringency 
of cholesterol for the function of the oxytocin receptor was demonstrated by replac-
ing cholesterol with an array of its structural analogs [76]. Further, the oxytocin 
receptor was shown to be more stable in the presence of cholesterol [109]. These 
results point out the role of specific mechanism in the cholesterol-dependent func-
tion of the oxytocin receptor.

4.1.3  �Galanin Receptor

Galanin receptors upon binding to the neuropeptide galanin mediate diverse physiolog-
ical functions in the peripheral and central nervous systems. The requirement of cho-
lesterol for galanin receptor (GalR2) function was shown by modulating cholesterol 
content in cellular membranes using MβCD or by culturing cells in lipoprotein-deficient 
serum [77]. Depletion of membrane cholesterol led to decrease in affinity of ligand 
binding to the receptor. In addition, complexation of cholesterol with filipin and enzy-
matic oxidation of cholesterol led to significant reduction in ligand binding activity of 
the receptor. The mechanistic basis of cholesterol sensitivity was evident from experi-
ments in which cholesterol was replaced with its structural analogs, thereby implying 
a possible specific mechanism responsible for cholesterol sensitivity of GalR2 [77].

4.1.4  �Chemokine Receptors

Chemokine receptors are important GPCRs implicated in immunity and infection. 
A wide range of chemokines bind to these receptors and mediate specific immune 
responses. Membrane cholesterol has been shown to be essential for stabilizing the 
functional conformation and signaling of CCR5 and CXCR4 receptors, members of 
the chemokine receptor family [90, 110, 111]. The cholesterol sensitivity of the 
function of CCR5 was shown using conformation-specific antibodies, whose bind-
ing to the receptor exhibited cholesterol dependence [110]. Treatment with choles-
terol oxidase [90] resulted in reduction in binding of epitope-specific antibodies to 
CCR5 along with loss in receptor function. In addition, replacement of cholesterol 
with 4-cholesten-3-one showed reduction in specific ligand binding to the receptor 
[110]. Similar results were observed for CXCR4 where depletion or oxidation of 
membrane cholesterol resulted in reduction in binding of conformation-specific 
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antibodies and signaling of the receptor [90, 111]. These effects were reversed upon 
replenishment with membrane cholesterol.

4.1.5  �Bitter Taste Receptors

The human bitter taste receptors (T2Rs) are chemosensory receptors with signifi-
cant therapeutic potential [112]. Earlier work from our laboratory has shown that 
the T2R4 receptor, a representative member of the bitter taste receptor family, 
exhibits cholesterol sensitivity in its signaling [83]. The molecular basis of such 
cholesterol dependence of receptor function could be attributed to the putative cho-
lesterol recognition/interaction amino acid consensus (CRAC) motif (see below), 
since mutation of a lysine residue in the CRAC sequence led to loss of cholesterol 
sensitivity of the receptor [83].

4.1.6  �Cannabinoid and Cholecystokinin Receptors

Cannabinoid receptors are activated by endocannabinoids which mediate a variety 
of physiological and neuroinflammatory processes, and are implicated in several 
neurodegenerative and neuroinflammatory disorders. The cholesterol sensitivity of 
type-1 cannabinoid (CB1) receptors was shown from dependence of specific ligand 
binding and signaling of the receptor on membrane cholesterol [80, 81, 113]. 
Importantly, such a sensitivity of CB1 receptor function to membrane cholesterol is 
lost upon mutation of a lysine residue in the putative CRAC sequence. Interestingly, 
the type-2 cannabinoid (CB2) receptor has glycine instead of lysine (as in CB1 
receptor) in the CRAC sequence [113] and does not show cholesterol dependence 
for its function [82, 113]. These studies point toward the possible involvement of the 
CRAC motif in cholesterol sensitivity of CB1 receptors.

Similar observations were reported for subtypes of cholecystokinin CCK1 and 
CCK2 receptors [114, 115]. CCK1 receptors were shown to be sensitive to mem-
brane cholesterol by analyzing active conformation of the receptor, probed using 
fluorescence of a specific fluorescent ligand and intracellular calcium response 
[114]. Interestingly, a closely related subtype CCK2 receptor has been shown to be 
insensitive to membrane cholesterol [115]. Importantly, mutation in CRAC motif 
region in CCK1 receptor resulted in the loss of its cholesterol sensitivity.

4.2  �Structural Evidence in Support of GPCR–Cholesterol 
Interaction

The specificity of cholesterol for the function of GPCRs has gained support from 
recently reported high-resolution crystal structures of GPCRs with bound choles-
terol molecules. Crystal structures of several GPCRs have been resolved with bound 
cholesterol molecules over the last decade (see Table 1). Cholesterol was found to 
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Table 1  GPCR structures with bound cholesterola

Receptor PDB ID # Cholb Reference

β2-adrenergic receptor 2RH1 3 [116]
3D4S 2 [117]
3NYA, 3NY8, 3NY9 2 [118]
3PDS 1 [119]
5JQH 1 [120]
5D5A, 5D5B 3 [121]
5X7D 2 [122]
5D6L 3 [123]

Adenosine A2A receptor 4EIY
5K2A, 5K2B, 5K2C, 5K2D

3
3

[124]
[125]

5IU4, 5IU7, 5IU8, 5IUA
5IUB

4
3

[126]
[126]

5UVI 3 [127]
5NLX, 5NM2, 5NM4 3 [128]
5MZJ, 5N2R
5MZP

3
4

[129]
[129]

5JTB 3 [130]
5VRA 3 [131]
6AQF 3 [132]
5OLH, 5OLO
5OM4, 5OLV, 5OM1, 5OLG, 
5OLZ

3
4

[133]
[133]

κ-opioid receptor 6B73 1 [134]
μ-opioid receptor 4DKL 1 [135]

5C1M 1 [136]
Metabotropic glutamate receptor 1 4OR2 6 (per 

dimer)
[137]

Smoothened 5L7D 1 (per 
dimer)

[138]

6D35 1 [139]
Serotonin2B receptor 4IB4 1 [140]

4NC3 1 [141]
5TVN 1 [142]

Cannabinoid receptor 1 5XR8, 5XRA 1 [143]
CC chemokine receptor type 9 5LWE 1 (per 

dimer)
[144]

Endothelin receptor type-B 5X93 1 [145]
US28 in complex with the chemokine 
domain of human CX3CL1

4XT1
5WB2

2
2

[146]

P2Y1 receptor 4XNV 1 [147]
P2Y12 receptor 4PXZ

4NTJ
1
2

[148]
[149]

aThe list was generated by searching the PDB database for GPCR structures with cholesterol as a 
small molecule ligand
bNumber of cholesterol molecules bound per GPCR monomer
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be bound between transmembrane helices (interhelical) within the receptor or 
between monomers of a receptor dimer. Interestingly, cholesterol sensitivity has 
been demonstrated in few of these GPCRs. We discuss below examples of GPCRs 
(see Fig. 3) which display cholesterol sensitivity in their function.

4.2.1  �β2-Adrenergic Receptor

One of the first high-resolution crystal structures of a GPCR with bound cholesterol 
molecules was for the β2-adrenergic receptor, in which three cholesterol molecules 
were found per receptor monomer (Fig.  3a; [116]). In addition, in a subsequent 
structure, two cholesterol molecules were identified in a shallow cleft formed by 
transmembrane helices I–IV of the receptor (Fig. 3b; [117]). Importantly, this struc-
ture was instrumental in defining one of the putative cholesterol interaction sites in 
GPCRs, the cholesterol consensus motif (CCM) (see below). The cholesterol depen-
dence of the stability and function of the β2-adrenergic receptor has been previously 
reported [150–153].

4.2.2  �Adenosine A2A Receptor

The high-resolution crystal structure of the adenosine A2A receptor showed three 
bound molecules of cholesterol, all of them located at the extracellular half of the 
transmembrane helices of the receptor (Fig. 3c; [124]). The three cholesterol mol-
ecules were found between transmembrane helices II/III, V/VI, and VI/
VII.  Interestingly, transmembrane helix VI which is implicated in ligand binding 
appears to be stabilized by cholesterol [124], and could provide structural basis for 
the reported cholesterol sensitivity of adenosine A2A receptor function [154].

4.2.3  �Opioid Receptors

In case of κ-, μ-, and δ-opioid receptors, cholesterol has been shown to modulate 
the affinity of ligand binding and signaling [62, 155, 156]. Recent crystal struc-
tures of the κ-opioid receptor ([134]; Fig. 3d) and μ-opioid receptor [135, 136]; 
Fig.  3e) showed cholesterol bound to transmembrane helices of the receptors. 
Cholesterol was found to interact with the transmembrane helices VI and VII of 
the μ-opioid receptor.

4.2.4  �Metabotropic Glutamate Receptor

Unlike class A GPCRs discussed above in which transmembrane domains consti-
tute predominant sites for ligand binding, the metabotropic glutamate receptor 
mGluR belongs to class C and has large extracellular domain(s) responsible for 
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β2-adrenergic receptor

(a)

Adenosine A2A receptor

Smoothened

κ-opioid receptor µ-opioid receptor

(b) (c)

(d) (e)

(f) (g)

Metabotropic glutamate 
receptor 1

Fig. 3  Crystal structures of representative GPCRs with bound cholesterol molecules. Bound cho-
lesterol molecules have been identified in crystal structures of several GPCRs (the corresponding 
PDB IDs are indicated in parentheses): (a, b) β2-adrenergic receptor (2RH1, 3D4S), (c) adenosine 
A2A receptor (4EIY), (d) κ-opioid receptor (6B73), (e) μ-opioid receptor (4DKL), (f) metabotropic 
glutamate receptor 1 (4OR2), and (g) smoothened (5L7D). Snapshots of cholesterol-bound 
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ligand binding. It has been earlier shown that membrane cholesterol modulates the 
ligand binding affinity and signaling of the mGluR [157, 158]. However, it was not 
clear how membrane cholesterol could modulate ligand binding at the extracellular 
domain of the receptor. The structural basis of such modulation of receptor function 
by membrane cholesterol was recently shown in a cholesterol-bound crystal struc-
ture of the mGluR [137]. In the receptor structure, six cholesterol molecules were 
bound symmetrically in the extracellular side of transmembrane helices I and II at 
the dimer interface (Fig. 3f). These structural evidences could form the basis of the 
observed role of cholesterol in mGluR function.

4.2.5  �Smoothened Receptor

One of the most compelling functional correlates of cholesterol interaction with 
GPCRs was shown in the recently reported structure of the sterol binding frizzled 
(class F) GPCR, smoothened (Smo) [138, 139, 159]. Smo is a component of the 
hedgehog signaling pathway involved in embryonic development and programmed 
cell death, and the role of cholesterol in this pathway is well documented [160]. 
Cholesterol acts as the endogenous activator of Smo by inducing conformational 
changes in the receptor that stimulates the hedgehog pathway. The structure of Smo 
showed a cholesterol molecule bound to the extracellular cysteine-rich domain of 
the receptor which is crucial for transduction of hedgehog signals (Fig.  3g). 
Importantly, the structure helped to predict key residues for this interaction, mutat-
ing which impaired hedgehog signaling [159].

We would like to end this section with a cautionary note. Although crystallogra-
phy is an excellent technique to resolve detailed high-resolution structures of 
GPCRs, it suffers from some inherent limitations. Despite the fact that the extra-
membranous regions of GPCRs play crucial roles in receptor function and signaling 
[161–163], the flexible loops corresponding to these regions are generally stabilized 
using a monoclonal antibody or replaced with lysozyme [116, 164, 165], since the 
inherent conformational flexibility of the loops poses a problem for crystallography. 
In addition, crystallography is often carried out in detergent dispersions or lipidic 
cubic phases using a heavily engineered (mutated) and antibody-bound receptor. 
In spite of the popularity of lipidic cubic phase membranes for GPCR crystalliza-
tion [166], the physiological significance of bound cholesterol molecules in GPCR 
crystal structures in lipidic cubic phases is not clear [167]. It is possible that the 
bound cholesterol molecules and the CCM site could be specific to membrane lipid 
environment (which is different in lipidic cubic phase relative to the lamellar phase). 
It would therefore be prudent to be careful in extrapolating bound cholesterol in 
crystal structures of GPCRs to their cholesterol-sensitive function.

Fig.  3  (continued) (cholesterol shown in green with its hydroxyl group in red) structures of 
GPCRs were generated from their respective PDB structures using PyMOL Molecular Graphics 
System (version 2.0.6 Schrödinger, LLC). Function of these GPCRs has been shown to be sensitive 
to membrane cholesterol. See text and Table 1 for more details

A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol…



36

4.3  �Cholesterol Interaction Motifs

The specific association of cholesterol with GPCRs that could possibly mediate 
cholesterol-dependent function is proposed to be manifested through conserved 
sequence motifs on these receptors. We discuss here few putative cholesterol 
interaction motifs that have been identified in GPCRs.

4.3.1  �Cholesterol Recognition/Interaction Amino Acid Consensus 
(CRAC) Motif

CRAC motif is one of the most well-studied sequence motifs proposed to be impli-
cated in the interaction of proteins with cholesterol. The CRAC motif is character-
ized by the sequence -L/V-(X)1-5-Y-(X)1-5-R/K- (from N-terminus to C-terminus of 
the protein), where (X)1-5 represents between one and five residues of any amino 
acid [24, 168]. Subsequent to the first report on the presence of CRAC motif in the 
peripheral-type benzodiazepine receptor [169], the motif has been identified in sev-
eral membrane proteins such as HIV transmembrane protein gp41 [170], caveolin-1 
[171], and receptors implicated in pathogen entry [35]. We reported, for the first 
time, the presence of CRAC motifs in representative GPCRs such as rhodopsin, β2-
adrenergic receptor, and the serotonin1A receptor [172].

We have previously shown that the serotonin1A receptor consists of three CRAC 
motifs in transmembrane helices II, V, and VII ([172]; see Fig. 4a). Interestingly, 
coarse-grain molecular dynamics simulations identified high cholesterol occupancy 
at the CRAC motif in transmembrane helix V of the serotonin1A receptor ([173]; see 
Fig. 4b). A characteristic feature of these sites is the inherent dynamics exhibited by 
cholesterol, ranging from ns to μs timescale. The corresponding energy landscape of 
cholesterol association with GPCRs can be described as a series of shallow minima, 
interconnected by low energy barriers (see Fig. 4c; [40]). Ongoing work in our labo-
ratory aims to elucidate the role of CRAC motifs in the function of the serotonin1A 
receptor. In addition, CRAC motifs have been identified and correlated to choles-
terol-dependent function of GPCRs such as CB1 [113], CCK1 [115], and bitter taste 
T2R4 receptors [83]. Importantly, as described earlier (see Sect. 4.1), mutation of 
key residues in the respective CRAC motifs in these GPCRs led to the modulation of 
cholesterol sensitivity of their function.

4.3.2  �CARC: An Inverted CRAC Motif

The search for cholesterol interaction sites led to the recent identification of CARC, 
a motif which is similar to CRAC sequence, but with opposite orientation along the 
polypeptide chain, i.e., -(K/R)-X1-5-(Y/F)-X1-5-(L/V)- [24, 174]. The CARC motif 
was first identified in the nicotinic acetylcholine receptor and was found to be 
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Fig. 4  (a) A schematic representation depicting the topological features and amino acid sequence 
of the human serotonin1A receptor embedded in a membrane bilayer consisting of phospholipids 
and cholesterol. The serotonin1A receptor consists of three CRAC motifs in transmembrane helices 
II (boxed in blue), V (boxed in red), and VII (boxed in green). Adapted and modified from [172]. 
(b) Residue-wise maximum occupancy of cholesterol at the serotonin1A receptor, obtained by 
coarse-grain molecular dynamics simulations. Maximum occupancy time (defined as the longest 
time a given cholesterol molecule is bound at a particular residue) of cholesterol at each amino acid 
of the serotonin1A receptor was averaged over simulations carried out at varying concentrations of 
cholesterol. Transmembrane helices are represented as gray bands, and CRAC motifs are high-
lighted as in (a). The high cholesterol occupancy observed at the CRAC motif on transmembrane 
helix V is noteworthy. Adapted and modified with permission from [173] (copyright 2018 American 
Chemical Society). (c) Energy landscape corresponding to cholesterol interaction sites in GPCRs. 
The interaction of cholesterol with GPCRs is weak, yet dynamic with varying occupancy times 
ranging from ns to μs timescale. This feature of the interaction of cholesterol with GPCRs is 
reflected in the energy landscape of cholesterol interaction which shows a series of shallow minima 
interconnected by low energy barriers. Adapted from [40]
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conserved over natural evolution among members of this family of receptors [174]. 
Interestingly, the CARC motif was found in several GPCRs such as rhodopsin, β2-
adrenergic receptor, δ-opioid receptor, galanin receptor type 1, metabotropic gluta-
mate receptor, and chemokine receptor CXCR4 [174]. Some of these receptors 
display cholesterol sensitivity in their function. The simultaneous presence of the 
CARC and CRAC motifs in two leaflets of the membrane bilayer in membrane 
proteins has been proposed as a potential “mirror code” [175].

4.3.3  �Cholesterol Consensus Motif (CCM)

CCM was one of the first putative cholesterol interaction sites identified in GPCRs 
from the crystal structure of the β2-adrenergic receptor [117]. On the basis of 
homology, the CCM site has been defined as [4.39-4.43(R,K)]-[4.50(W,Y)]-
[4.46(I,V,L)]-[2.41(F,Y)] (according to the Ballesteros–Weinstein nomenclature 
[176]). We have previously shown high cholesterol occupancy at the CCM site 
located at the groove of transmembrane helices II and IV of the β2-adrenergic 
receptor using coarse-grain molecular dynamics simulations [177]. We have earlier 
identified a characteristic CCM in the serotonin1A receptor which was found to be 
evolutionarily conserved [49].

However, it should be noted that mere presence of cholesterol interaction motif(s) 
does not necessarily translate to cholesterol-dependence of receptor function. 
For example, the neurotensin receptor 1 does not exhibit cholesterol sensitivity for 
its function, although the receptor has CCM in its sequence [178].

4.3.4  �The Accessibility Issue: Nonannular Binding Sites

In the context of cholesterol binding sites in GPCRs, we previously proposed that 
these sites could represent “nonannular” binding sites whose possible locations could 
be inter or intramolecular (interhelical) protein interfaces [49]. Transmembrane pro-
teins are surrounded by a shell (or annulus) of lipid molecules, termed as “annular” 
lipids [179]. The rate of exchange of lipids between the annular lipid shell and the 
bulk lipid phase was shown to be approximately an order of magnitude slower than 
the rate of exchange of bulk lipids [37, 179]. In addition, it was previously proposed 
that cholesterol binding sites could be “nonannular” in nature [180, 181]. Nonannular 
sites are characterized by relative lack of accessibility (due to their location in deep 
clefts or cavities on the protein surface) to the annular lipids [182], and therefore it is 
proposed that lipids in these sites are difficult to be replaced by competition with 
annular lipids [181]. Binding to the nonannular sites is considered to be more specific 
compared to annular sites. Interestingly, a recent study, employing experimental and 
simulation approaches, has proposed that membrane cholesterol could enter the deep 
orthosteric ligand binding pocket in the adenosine A2A receptor [183].
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5  �General Effects of Membrane Cholesterol on GPCRs

The influence of cholesterol on bulk (global) membrane properties has been exten-
sively studied. Cholesterol has been shown to modulate membrane physical properties 
such as fluidity, curvature, phase, elasticity, dipole potential, and thickness [184–193]. 
Such effects of cholesterol on general membrane properties have been shown to 
modulate the organization and function of GPCRs (see Fig. 5; [75, 76, 194–196]). 

Adaptation to hydrophobic mismatch

Change in membrane fluidity

7-DHC
epi-Cholesterol

Change in membrane dipole potential

(a)

(b)
Cholesterol
ent-Cholesterol

Fig. 5  A schematic representation depicting general effects of cholesterol on membrane physical 
properties. (a) Changes in membrane fluidity and adaptation to hydrophobic mismatch could mod-
ulate GPCR function. (b) Dipole potential of membranes containing cholesterol and its close struc-
tural analogs. Membranes containing cholesterol and ent-cholesterol exhibit higher dipole potential 
(shown as arrows, the length of which represents the magnitude of dipole potential) relative to 
7-dehydrocholesterol (7-DHC) and epi-cholesterol. Such changes in membrane dipole potential 
have implications in GPCR function. See text for more details
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As discussed above, the specific requirement of cholesterol has been implicated in the 
function of several GPCRs. The other mechanism by which membrane cholesterol 
could modulate GPCR function is by affecting general (bulk) membrane properties. 
What follows below is a brief overview of some of the studies on representative 
GPCRs where cholesterol-induced modulation of general membrane properties has 
been implicated in receptor function.

5.1  �Rhodopsin

Rhodopsin is a photoreceptor of retinal rod cells and upon exposure to light, under-
goes a series of conformational changes. Light-activated rhodopsin exists in equi-
librium with a number of intermediates, collectively termed metarhodopsins. 
Cholesterol is known to regulate the activation of rhodopsin by influencing the equi-
librium between the inactive metarhodopsin I (MI) and active metarhodopsin II 
(MII) states of the receptor [197, 198]. Membrane cholesterol has been shown to 
stabilize the inactive MI state of the receptor by inducing ordering of membrane 
lipids, thereby reducing the equilibrium MII (active state) concentration [199]. 
By increasing the lipid acyl chain ordering, cholesterol reduces the free volume in 
membrane bilayers [75, 200]. This change in free volume by cholesterol is implied 
in the observed shift in equilibrium of MI and MII states of rhodopsin [75]. 
Interestingly, the extent of MII formation displayed a positive correlation with free 
volume in membranes over a range of cholesterol concentration.

In addition, a variety of mechanisms such as adaptation of rhodopsin to bilayer 
thickness (in case of hydrophobic mismatch) and membrane curvature have been 
proposed to regulate MI-MII equilibrium [195]. Interestingly, cholesterol is known 
to modulate membrane thickness [186] and induce membrane curvature [188]. It is 
therefore possible that the observed effects of cholesterol on rhodopsin function 
(MI-MII equilibrium) could be partly due to its effect on membrane thickness 
(hydrophobic mismatch) and curvature.

5.2  �Serotonin1A Receptor

The role of cholesterol in the function of the serotonin1A receptor has been well 
worked out by our laboratory [3, 37, 40, 42, 201]. Utilizing multiple approaches, we 
showed that serotonin1A receptors exhibit stringent requirement for cholesterol to 
support their function, with evidence pointing toward a specific mechanism in many 
cases (see Sect. 4.1). However, the role of bulk membrane effects of cholesterol on 
the receptor function cannot be ruled out. With an overall objective of addressing 
the role of membrane physical properties in receptor function, we monitored the 
microviscosity of membranes of varying cholesterol content using a fluorescent 
molecular rotor which allows measurement of membrane viscosity through its 
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characteristic viscosity-sensitive fluorescence depolarization [196]. A noteworthy 
feature of our results was that specific agonist binding by the serotonin1A receptor 
exhibited close correlation with membrane viscosity. This prompted us to speculate 
that global membrane properties modulated by cholesterol are important in the 
function of the serotonin1A receptor.

Along similar lines, we measured membrane dipole potential of membranes of 
varying cholesterol content using an electrochromic fluorescent probe [202]. This 
provides a convenient method to measure dipole potential, utilizing the probe fluo-
rescence, which is sensitive to the electric field in which the probe is localized 
[192]. Membrane dipole potential is the potential difference within the membrane 
bilayer, generated due to the nonrandom arrangement (orientation) of amphiphile 
dipoles in the membrane interfacial region [203]. Importantly, membrane dipole 
potential has been shown to play a role in the function of membrane proteins and 
peptides [204, 205]. In this case too, we noted a correlation between membrane 
dipole potential and receptor activity [202], reinforcing the above conclusion that 
global membrane properties could be crucial for the function of the serotonin1A 
receptor, even if that may not be the whole story.

5.3  �Cholecystokinin Receptor

The function of cholecystokinin receptors has been shown to be sensitive to mem-
brane cholesterol content [76]. Interestingly, replacement of membrane cholesterol 
with sterol analogs that restored membrane fluidity (to levels comparable to mem-
brane fluidity when cholesterol was used) supported the function of the receptor. 
The specific ligand binding to the receptor exhibited a positive correlation with 
membrane fluidity, thereby implying the general effect of cholesterol on receptor 
function.

6  �Conclusions

While examples of membrane cholesterol sensitivity of GPCR function have 
increased over the years, the mechanism underlying such phenomena remains elu-
sive. The notion that cholesterol sensitivity of GPCR function has two underlying 
mutually exclusive mechanisms appears somewhat arbitrary (although may have 
provided some early insights). A major reason for this is the fact that it is not always 
possible to dissect out specific and general effects in a cooperative molecular assem-
bly such as membranes. We would like to illustrate this with recent work done by us 
[60, 206] and others [207]. In our ongoing work on the role of membrane cholesterol 
on the function of the serotonin1A receptor, we utilized two stereoisomers of choles-
terol, ent-cholesterol and epi-cholesterol [60]. These are enantiomer and diaste-
reomer of cholesterol, respectively. While ent-cholesterol is the non-superimposable 
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mirror image of natural cholesterol, only the orientation of the hydroxyl group at 
carbon-3 is inverted relative to natural cholesterol in epi-cholesterol. Interestingly, 
ent-cholesterol is often used to distinguish specific interaction of cholesterol from 
nonspecific effects [208–211]. Typically, enantiomers are characterized by identi-
cal physicochemical properties (except for the direction of rotation of plane-
polarized light).

We showed that ent-cholesterol, but not epi-cholesterol, could replace choles-
terol in supporting the function of the serotonin1A receptor [60]. In other words, our 
results demonstrated that the requirement of membrane cholesterol for the seroto-
nin1A receptor function is diastereospecific, but not enantiospecific. A direct impli-
cation of these results is that a key structural feature of natural cholesterol in terms 
of its ability to support the function of the serotonin1A receptor is the equatorial 
configuration of the 3-hydroxyl group. We attributed these results to the fact that 
epi-cholesterol, differing with cholesterol only in the axial orientation of the 
3-hydroxyl group, was unable to support receptor function. We therefore con-
cluded that the interaction of membrane cholesterol with the serotonin1A receptor 
is specific in nature [60]. A recent paper reported the detailed physical properties 
of membranes containing epi-cholesterol determined by atomistic molecular 
dynamics simulations [207]. A closer examination of this paper reveals that physi-
cal properties of membranes such as lipid headgroup area, tilt angle, order param-
eter, and extent of interdigitation are different for membranes containing cholesterol 
and epi-cholesterol. Similar observations were also reported earlier [212]. In addi-
tion, we earlier reported that dipole potential of membranes containing cholesterol 
and epi-cholesterol is very different ([206]; see Fig. 5b). Keeping in mind all of the 
above, whether the difference in receptor function reported by us [60] could be due 
to these differences in membrane physical properties, or difference in specific inter-
action due to the orientation of the 3-hydroxyl group, remains a moot question. 
At this point in time, it is not easy to dissect out a precise answer to this question 
with available approaches. In addition, specific and general effects of cholesterol 
may not be mutually exclusive and the observed effect could be a combination of 
both. Clearly, a judicious combination of experimental and computational 
approaches would provide more holistic insight into the mechanism of cholesterol 
sensitivity of GPCR function.
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